Environmental Windows Research Update: Smallmouth Bass Studies

Burton Suedel Justin Wilkens USACE-ERDC-EL Vicksburg, MS

Scott Pickard
USACE Buffalo District

Hal Harrington
USACE Detroit District

Great Lakes Dredging Team Annual Meeting

4 June 2015 Green Bay, WI

US Army Corps of Engineers
BUILDING STRONG®

Dredging Effects on Smallmouth Bass

Problem

- The EW in multiple Great Lakes harbors is restricting dredging operations
- Smallmouth bass spawning along waterway shoals
- Suspended sediment threshold data are lacking for smallmouth bass relevant to dredging
- Effects data are essential for conducting risk assessments and managing dredging risks

Objective

 Develop suspended sediment effects data for smallmouth bass early life stages to reduce uncertainty about adverse dredging impacts

Research Overview

- Smallmouth Bass (Micropterus dolomieu)
 - ► Concern:
 - Turbidity impacts to early life stages in spawning grounds on shoals along waterway margins
 - ▶ Sediment collection locations:
 - Lake Michigan Grand Haven Harbor, MI
 - Lake Erie Fairport Harbor, OH
 - ► Fish sources:
 - East Texas
 - Illinois
 - ► Early life stages:
 - Eggs
 - Swim-up fry

Fish Larvae and Egg Exposure System (FLEES)

Experimental Design

- Three (3) modules
- Three (3) 500 L water baths
- 15 aquaria
- 20 L polyethylene carboy aquaria
- Modules insulated on sides and water surface to control temperature
- Each aquarium utilizes pump to suspend sediment

Materials and Methods

- Smallmouth Bass
- Experiments: Texas and Illinois eggs (newly spawned) and swim-up fry
- Sediment: Fairport Harbor (Lake Erie); Grand Haven Harbor (Lake Michigan)
- Concentrations: 0, 100, 250, 500 mg/L TSS
- Duration: 3 days (72 h)
- Temp: 16.1 18.8°C
- D.O.: 7.2-7.6 mg/L
- Water volume exchange:1-2; 4-6 (grow-out)

Experimental Endpoints

Eggs→**Larvae**

Survival immediately post-hatch

Swim-up fry

- Survival, growth, and swimming performance
- Survival and growth of swim-up fry grown out after exposure

Sediment Characteristics

	Sediment				
	Grand Haven	Fairport			
Parameter	Harbor	Harbor			
Cation Exchange Capacity, meq/100g	3.8	3.8			
Moisture, percent	47.86	42.85			
Organic Matter, percent	2.4	2.7			
Soil pH	7.9	7.7			
Total Organic Carbon, percent	1.69	1.57			
Clay, percent	6	20			
Silt, percent	20	60			
Sand, percent	74	20			
Textural Classification	Sandy Loam	Silt Loam			

Larval survival after 3-days exposure to suspended sediments as eggs

						Significant (Yes/No)	
Sediment	Nominal TSS (mg/L)	Measured TSS (mg/L)	N	Post hatch survival (%)	P-value	1 tailed	2 tailed
Fairport Harbor	0	0 ± 3	3	84 ± 5			
	100	100 ± 13	4	60 ± 14*	0.07	Υ	N
	250	247 ± 24	4	16 ± 9*	<0.001	Υ	Υ
	500	547 ± 47	4	26 ± 16*	<0.001	Υ	Υ
Grand Haven Harbor	0	0 ± 2	3	81 ± 5			
	100	111 ± 10	4	$9\pm5^{\color{red}\star}$	<0.001	Υ	Υ
	250	258 ± 9	4	15 ± 10*	<0.001	Υ	Υ
	500	546 ± 46	4	6 ± 6*	<0.001	Υ	Υ
							HAH

Survival and growth of smallmouth bass fry exposed to suspended sediment for 3 days

Sediment	Measured TSS (mg/L)	Survival (%)	Dry weight (mg)	Total Length (mm)	Standard length (mm)	Swim bladder length (mm)
Fairport Harbor	0 ± 4	99 ± 1	3.0 ± 0.1	11.47 ± 0.13	10.04 ± 0.06	1.53 ± 0.06
	91 ± 11	100 ± 1	3.1 ± 0.2	11.67 ± 0.07	10.03 ± 0.08	1.58 ± 0.02
	221 ± 17	100 ± 0	2.9 ± 0.7	11.16 ± 0.71	9.55 ± 0.58	1.46 ± 0.16
	452 ± 39	90 ± 17	2.2 ± 0.2*	10.97 ± 0.33	9.32 ± 0.27*	1.38 ± 0.13
Grand Haven Harbor	0 ± 3	100 ± 0	2.6 ± 0.2	11.14 ± 0.20	9.74 ± 0.08	1.37 ± 0.08
	110 ± 17	100 ± 0	2.4 ± 0.1	11.24 ± 0.12	9.67 ± 0.12	1.43 ± 0.04
	263 ± 37	100 ± 0	2.0 ± 0.2*	10.85 ± 0.06*	9.30 ± 0.06*	1.32 ± 0.08
	528 ± 40	95 ± 6	1.7 ± 0.0*	10.64 ± 0.12*	9.10 ± 0.09*	1.29 ± 0.05

Swimming Behavior of Texas Fish

No statistical differences relative to the controls were observed for total distance moved (left; p=0.344) and mean velocity (right; p=0.343).

Grow-out survival & growth of smallmouth bass fry reared post exposure

				Total		
G 11	Measured	G 1 (0())	Dry weight	Length	Standard length	SGR
Sediment	TSS (mg/L)	Survival (%)	(mg)	(mm)	(mm)	(total)
Fairport Harbor (26 days)	0 ± 4	77 ± 15	13.7 ± 2.0	19.87 ± 0.91	16.98 ± 0.47	2.76 ± 0.23
	91 ± 11	58 ± 13	14.0 ± 2.3	20.10 ± 0.77	17.05 ± 0.72	2.77 ± 0.27
	221 ± 17	66 ± 16	13.0 ± 4.4	19.36 ± 1.88	16.27 ± 1.52	2.54 ± 0.50
	452 ± 39	48 ± 11*	12.4 ± 4.0	19.03 ± 1.65	16.04 ± 1.36	2.53 ± 0.64
Grand Haven Harbor (7 days)	0 ± 3	100 ± 0	7.4 ± 0.1	14.58 ± 0.19	12.89 ± 0.06	5.35 ± 0.08
	110 ± 17	100 ± 0	7.1 ± 0.4	14.38 ± 0.27	12.67 ± 0.30	5.14 ± 0.26
	263 ± 37	100 ± 0	5.6 ± 0.6 *	13.59 ± 0.31*	11.80 ± 0.28*	4.13 ± 0.48 *
	528 ± 40	95 ± 6	5.0 ± 0.6 *	13.22 ± 0.22*	11.64 ± 0.21*	3.66 ± 0.47*

Research Findings

- Exposed eggs hatched normally but newly hatched larvae are more vulnerable to the effects of suspended sediment
- Egg experiments indicated reduced survival of larvae when exposed to suspended sediments (≥ 100 mg/L TSS)
- Swim-up fry survival was not reduced (≥ 90%) even at the highest exposure concentration
- Sublethal effects were observed in growth of fish in swim-up fry experiments
 - ► FPH (silt loam): NOEC=221 mg/L; LOEC=452 mg/L
 - ► GHH (sandy loam): NOEC=110 mg/L; LOEC=263 mg/L
- Swimming behavior of fry not affected

Research Findings, Cont'd.

- Swim-up fry were found to be more tolerant of high TSS concentrations in the silty (FPH) sediment than the sandy (GHH) sediment
- Sublethal growth effects were observed in fish in growout fry experiments
 - ► FPH (26-d): NOEC=221 mg/L; LOEC=452 mg/L
 - ► GHH (7-d): NOEC=91 mg/L; LOEC=221 mg/L
- Worst case exposure scenario that can be conservatively extrapolated to the field for protecting the smallmouth bass fishery in Great Lakes harbors
- Publication in JGLR

